1 a $f(x) = \sin 2x, \ x \in [0, 2\pi]$

The transformation from the graph of $g(x)=\sin x$ is a dilation from the y axis of factor $\frac{1}{2}$.

b

$$f(x)=\cos\Bigl(x+rac{\pi}{3}\Bigr),\ x\in\left[-rac{\pi}{3},\ \pi
ight]$$

The transformation from the graph of $g(x)=\cos x$ is a translation of $\frac{\pi}{3}$ to the left.

$$figg(rac{-\pi}{3}igg)=\cos 0=1$$

$$f(0)=\cosrac{\pi}{3}=rac{1}{2}$$

$$f(\pi)=\cosrac{4\pi}{3}=-\cosrac{\pi}{3}=-rac{1}{2}$$

- $\begin{pmatrix}
 -\frac{\pi}{3}, 1 \\
 -\frac{\pi}{3} & 0 \\
 -\frac{1}{2} & \frac{\pi}{6} & \frac{2\pi}{3} & \pi \\
 -1 & (\pi, -\frac{1}{2})
 \end{pmatrix}$
- C

$$f(x)=\cos\Bigl(2\Bigl(x+rac{\pi}{3}\Bigr)\Bigr),\ x\in[0,\ \pi]$$

The transformations from the graph of $g(x)=\cos x$ are a dilation from the y axis of factor $\frac{1}{2}$ and a translation of $\frac{\pi}{3}$ to the left.

$$f(0)=\cos\!\left(rac{2\pi}{3}
ight)=-rac{1}{2}$$

$$f(\pi) = \cos\!\left(rac{8\pi}{3}
ight) = -rac{1}{2}$$

 $f(x) = 2\sin(3x) + 1, \ x \in [0, \ \pi]$

The transformations from the graph of $g(x) = \sin x$ are a dilation from the y axis of factor $\frac{1}{3}$, a dilation from the x axis of factor x and a translation of x in the positive direction of the x axis.

To find x axis intercepts for f(x) , solve f(x)=0

i.e.
$$2\sin(3x) + 1 = 0, \ x \in [0, \ \pi]$$

$$\therefore \sin(3x)=-\frac{1}{2},\ 3x\in[0,\ 3\pi]$$

$$\therefore 3x = \frac{7\pi}{6}, \ \frac{11\pi}{6}$$

d

$$\therefore x = \frac{7\pi}{18}, \ \frac{11\pi}{18}$$

$$f(0) = 1, \ f(\pi) = 2\sin(3\pi) + 1$$

 $f(x)=2\sin\!\left(x-rac{\pi}{4}
ight)+\sqrt{3},\;x\in[0,\;2\pi]$

The transformations from the graph of $g(x)=\sin x$ are a dilation from the x axis of factor 2, a translation of $\frac{\pi}{4}$ to the right and a translation of $\sqrt{3}$ in the positive direction of the y axis.

$$f(0)=2\sin\!\left(-rac{\pi}{4}
ight)+\sqrt{3}$$
 $=-2\sin\!\left(rac{\pi}{4}
ight)+\sqrt{3}$
 $=\sqrt{3}-\sqrt{2}$
 $f(2\pi)=2\sin\!\left(rac{7\pi}{4}
ight)+\sqrt{3}$
 $=\sqrt{3}-\sqrt{2}$

To find x axis intercepts for f(x) , solve f(x)=0

i.e.
$$2\sin\!\left(x-rac{\pi}{4}
ight)+\sqrt{3}=0,\;x\in[0,\;2\pi]$$

$$\therefore \sin\!\left(x-\frac{\pi}{4}\right) = \frac{-\sqrt{3}}{2},$$

$$x-rac{\pi}{4}\in\left[-rac{\pi}{4},\;rac{7\pi}{4}
ight]$$

$$\therefore x-\frac{\pi}{4}=\frac{4\pi}{3},\ \frac{5\pi}{3}$$

$$\therefore x = \frac{19\pi}{12}, \; \frac{23\pi}{12}$$

f

2 a

C

b

d

e

f

